Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Front Behav Neurosci ; 17: 1096720, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091594

RESUMO

Introduction: Millions of people worldwide take medications such as L-DOPA that increase dopamine to treat Parkinson's disease. Yet, we do not fully understand how L-DOPA affects sleep and memory. Our earlier research in Parkinson's disease revealed that the timing of L-DOPA relative to sleep affects dopamine's impact on long-term memory. Dopamine projections between the midbrain and hippocampus potentially support memory processes during slow wave sleep. In this study, we aimed to test the hypothesis that L-DOPA enhances memory consolidation by modulating NREM sleep. Methods: We conducted a double-blind, randomised, placebo-controlled crossover trial with healthy older adults (65-79 years, n = 35). Participants first learned a word list and were then administered long-acting L-DOPA (or placebo) before a full night of sleep. Before sleeping, a proportion of the words were re-exposed using a recognition test to strengthen memory. L-DOPA was active during sleep and the practice-recognition test, but not during initial learning. Results: The single dose of L-DOPA increased total slow-wave sleep duration by approximately 11% compared to placebo, while also increasing spindle amplitudes around slow oscillation peaks and around 1-4 Hz NREM spectral power. However, behaviourally, L-DOPA worsened memory of words presented only once compared to re-exposed words. The coupling of spindles to slow oscillation peaks correlated with these differential effects on weaker and stronger memories. To gauge whether L-DOPA affects encoding or retrieval of information in addition to consolidation, we conducted a second experiment targeting L-DOPA only to initial encoding or retrieval and found no behavioural effects. Discussion: Our results demonstrate that L-DOPA augments slow wave sleep in elderly, perhaps tuning coordinated network activity and impacting the selection of information for long-term storage. The pharmaceutical modification of slow-wave sleep and long-term memory may have clinical implications. Clinical trial registration: Eudract number: 2015-002027-26; https://doi.org/10.1186/ISRCTN90897064, ISRCTN90897064.

2.
Brain Sci ; 11(6)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204389

RESUMO

Functional cognitive disorder (FCD) is a relatively common cause of cognitive symptoms, characterised by inconsistency between symptoms and observed or self-reported cognitive functioning. We aimed to improve the clinical characterisation of FCD, in particular its differentiation from early neurodegeneration. Two patient cohorts were recruited from a UK-based tertiary cognitive clinic, diagnosed following clinical assessment, investigation and expert multidisciplinary team review: FCD, (n = 21), and neurodegenerative Mild Cognitive Impairment (nMCI, n = 17). We separately recruited a healthy control group (n = 25). All participants completed an assessment battery including: Hopkins Verbal Learning Test-Revised (HVLT-R), Trail Making Test Part B (TMT-B); Depression Anxiety and Stress Scale (DASS) and Minnesota Multiphasic Personality Inventory (MMPI-2RF). In comparison to healthy controls, the FCD and nMCI groups were equally impaired on trail making, immediate recall, and recognition tasks; had equally elevated mood symptoms; showed similar aberration on a range of personality measures; and had similar difficulties on inbuilt performance validity tests. However, participants with FCD performed significantly better than nMCI on HVLT-R delayed free recall and retention (regression coefficient -10.34, p = 0.01). Mood, personality and certain cognitive abilities were similarly altered across nMCI and FCD groups. However, those with FCD displayed spared delayed recall and retention, in comparison to impaired immediate recall and recognition. This pattern, which is distinct from that seen in prodromal neurodegeneration, is a marker of internal inconsistency. Differentiating FCD from nMCI is challenging, and the identification of positive neuropsychometric features of FCD is an important contribution to this emerging area of cognitive neurology.

3.
Neuroimage ; 238: 118214, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34116150

RESUMO

A better understanding of early brain changes that precede loss of independence in diseases like Alzheimer's disease (AD) is critical for development of disease-modifying therapies. Quantitative MRI, such as T2 relaxometry, can identify microstructural changes relevant to early stages of pathology. Recent evidence suggests heterogeneity of T2 may be a more informative MRI measure of early pathology than absolute T2. Here we test whether T2 markers of brain integrity precede the volume changes we know are present in established AD and whether such changes are most marked in medial temporal lobe (MTL) subfields known to be most affected early in AD. We show that T2 heterogeneity was greater in people with mild cognitive impairment (MCI; n = 49) compared to healthy older controls (n = 99) in all MTL subfields, but this increase was greatest in MTL cortices, and smallest in dentate gyrus. This reflects the spatio-temporal progression of neurodegeneration in AD. T2 heterogeneity in CA1-3 and entorhinal cortex and volume of entorhinal cortex showed some ability to predict cognitive decline, where absolute T2 could not, however further studies are required to verify this result. Increases in T2 heterogeneity in MTL cortices may reflect localised pathological change and may present as one of the earliest detectible brain changes prior to atrophy. Finally, we describe a mechanism by which memory, as measured by accuracy and reaction time on a paired associate learning task, deteriorates with age. Age-related memory deficits were explained in part by lower subfield volumes, which in turn were directly associated with greater T2 heterogeneity. We propose that tissue with high T2 heterogeneity represents extant tissue at risk of permanent damage but with the potential for therapeutic rescue. This has implications for early detection of neurodegenerative diseases and the study of brain-behaviour relationships.


Assuntos
Envelhecimento , Doença de Alzheimer/diagnóstico , Cognição/fisiologia , Disfunção Cognitiva/diagnóstico , Imageamento por Ressonância Magnética/métodos , Lobo Temporal/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Diagnóstico Precoce , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos
4.
Age Ageing ; 50(1): 72-80, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33197937

RESUMO

Given considerable variation in diagnostic and therapeutic practice, there is a need for national guidance on the use of neuroimaging, fluid biomarkers, cognitive testing, follow-up and diagnostic terminology in mild cognitive impairment (MCI). MCI is a heterogenous clinical syndrome reflecting a change in cognitive function and deficits on neuropsychological testing but relatively intact activities of daily living. MCI is a risk state for further cognitive and functional decline with 5-15% of people developing dementia per year. However, ~50% remain stable at 5 years and in a minority, symptoms resolve over time. There is considerable debate about whether MCI is a useful clinical diagnosis, or whether the use of the term prevents proper inquiry (by history, examination and investigations) into underlying causes of cognitive symptoms, which can include prodromal neurodegenerative disease, other physical or psychiatric illness, or combinations thereof. Cognitive testing, neuroimaging and fluid biomarkers can improve the sensitivity and specificity of aetiological diagnosis, with growing evidence that these may also help guide prognosis. Diagnostic criteria allow for a diagnosis of Alzheimer's disease to be made where MCI is accompanied by appropriate biomarker changes, but in practice, such biomarkers are not available in routine clinical practice in the UK. This would change if disease-modifying therapies became available and required a definitive diagnosis but would present major challenges to the National Health Service and similar health systems. Significantly increased investment would be required in training, infrastructure and provision of fluid biomarkers and neuroimaging. Statistical techniques combining markers may provide greater sensitivity and specificity than any single disease marker but their practical usefulness will depend on large-scale studies to ensure ecological validity and that multiple measures, e.g. both cognitive tests and biomarkers, are widely available for clinical use. To perform such large studies, we must increase research participation amongst those with MCI.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doenças Neurodegenerativas , Atividades Cotidianas , Peptídeos beta-Amiloides , Biomarcadores , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/epidemiologia , Consenso , Progressão da Doença , Humanos , Testes Neuropsicológicos , Fragmentos de Peptídeos , Medicina Estatal
5.
J Vis ; 20(13): 6, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33289797

RESUMO

Studying the sources of errors in memory recall has proven invaluable for understanding the mechanisms of working memory (WM). While one-dimensional memory features (e.g., color, orientation) can be analyzed using existing mixture modeling toolboxes to separate the influence of imprecision, guessing, and misbinding (the tendency to confuse features that belong to different memoranda), such toolboxes are not currently available for two-dimensional spatial WM tasks. Here we present a method to isolate sources of spatial error in tasks where participants have to report the spatial location of an item in memory, using two-dimensional mixture models. The method recovers simulated parameters well and is robust to the influence of response distributions and biases, as well as number of nontargets and trials. To demonstrate the model, we fit data from a complex spatial WM task and show the recovered parameters correspond well with previous spatial WM findings and with recovered parameters on a one-dimensional analogue of this task, suggesting convergent validity for this two-dimensional modeling approach. Because the extra dimension allows greater separation of memoranda and responses, spatial tasks turn out to be much better for separating misbinding from imprecision and guessing than one-dimensional tasks. Code for these models is freely available in the MemToolbox2D package and is integrated to work with the commonly used MATLAB package MemToolbox.


Assuntos
Memória de Curto Prazo/fisiologia , Memória Espacial/fisiologia , Idoso , Feminino , Percepção de Forma/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Psicológicos , Testes Neuropsicológicos , Orientação Espacial/fisiologia
7.
Alzheimers Res Ther ; 12(1): 119, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32988418

RESUMO

BACKGROUND: Here, we address a pivotal factor in Alzheimer's prevention-identifying those at risk early, when dementia can still be avoided. Recent research highlights an accelerated forgetting phenotype as a risk factor for Alzheimer's disease. We hypothesized that delayed recall over 4 weeks would predict cognitive decline over 1 year better than 30-min delayed recall, the current gold standard for detecting episodic memory problems which could be an early clinical manifestation of incipient Alzheimer's disease. We also expected hippocampal subfield volumes to improve predictive accuracy. METHODS: Forty-six cognitively healthy older people (mean age 70.7 ± 7.97, 21/46 female), recruited from databases such as Join Dementia Research, or a local database of volunteers, performed 3 memory tasks on which delayed recall was tested after 30 min and 4 weeks, as well as Addenbrooke's Cognitive Examination III (ACE-III) and CANTAB Paired Associates Learning. Medial temporal lobe subregion volumes were automatically measured using high-resolution 3T MRI. The ACE-III was repeated after 12 months to assess the change in cognitive ability. We used univariate linear regressions and ROC curves to assess the ability of tests of delayed recall to predict cognitive decline on ACE-III over the 12 months. RESULTS: Fifteen of the 46 participants declined over the year (≥ 3 points lost on ACE-III). Four-week verbal memory predicted cognitive decline in healthy older people better than clinical gold standard memory tests and hippocampal MRI. The best single-test predictor of cognitive decline was the 4-week delayed recall on the world list (R2 = .123, p = .018, ß = .418). Combined with hippocampal subfield volumetry, 4-week verbal recall identifies those at risk of cognitive decline with 93% sensitivity and 86% specificity (AUC = .918, p < .0001). CONCLUSIONS: We show that a test of accelerated long-term forgetting over 4 weeks can predict cognitive decline in healthy older people where traditional tests of delayed recall cannot. Accelerated long-term forgetting is a sensitive, easy-to-test predictor of cognitive decline in healthy older people. Used alone or with hippocampal MRI, accelerated forgetting probes functionally relevant Alzheimer's-related change. Accelerated forgetting will identify early-stage impairment, helping to target more invasive and expensive molecular biomarker testing.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Disfunção Cognitiva/diagnóstico por imagem , Feminino , Humanos , Transtornos da Memória/diagnóstico por imagem , Rememoração Mental , Pessoa de Meia-Idade , Testes Neuropsicológicos
8.
Alzheimers Res Ther ; 12(1): 105, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32912337

RESUMO

BACKGROUND: Early Alzheimer's disease (AD) diagnosis is vital for development of disease-modifying therapies. Prior to significant brain tissue atrophy, several microstructural changes take place as a result of Alzheimer's pathology. These include deposition of amyloid, tau and iron, as well as altered water homeostasis in tissue and some cell death. T2 relaxation time, a quantitative MRI measure, is sensitive to these changes and may be a useful non-invasive, early marker of tissue integrity which could predict conversion to dementia. We propose that different microstructural changes affect T2 in opposing ways, such that average 'midpoint' measures of T2 are less sensitive than measuring distribution width (heterogeneity). T2 heterogeneity in the brain may present a sensitive early marker of AD pathology. METHODS: In this cohort study, we tested 97 healthy older controls, 49 people with mild cognitive impairment (MCI) and 10 with a clinical diagnosis of AD. All participants underwent structural MRI including a multi-echo sequence for quantitative T2 assessment. Cognitive change over 1 year was assessed in 20 participants with MCI. T2 distributions were modelled in the hippocampus and thalamus using log-logistic distribution giving measures of log-median value (midpoint; T2µ) and distribution width (heterogeneity; T2σ). RESULTS: We show an increase in T2 heterogeneity (T2σ; p < .0001) in MCI compared to healthy controls, which was not seen with midpoint (T2µ; p = .149) in the hippocampus and thalamus. Hippocampal T2 heterogeneity predicted cognitive decline over 1 year in MCI participants (p = .018), but midpoint (p = .132) and volume (p = .315) did not. Age affects T2, but the effects described here are significant even after correcting for age. CONCLUSIONS: We show that T2 heterogeneity can identify subtle changes in microstructural integrity of brain tissue in MCI and predict cognitive decline over a year. We describe a new model that considers the competing effects of factors that both increase and decrease T2. These two opposing forces suggest that previous conclusions based on T2 midpoint may have obscured the true potential of T2 as a marker of subtle neuropathology. We propose that T2 heterogeneity reflects microstructural integrity with potential to be a widely used early biomarker of conditions such as AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/complicações , Doença de Alzheimer/diagnóstico por imagem , Atrofia , Biomarcadores , Disfunção Cognitiva/diagnóstico por imagem , Estudos de Coortes , Humanos , Imageamento por Ressonância Magnética
10.
Sci Rep ; 7(1): 14069, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-29070813

RESUMO

Both recognition of familiar objects and pattern separation, a process that orthogonalises overlapping events, are critical for effective memory. Evidence is emerging that human pattern separation requires dentate gyrus. Dentate gyrus is intimately connected to CA3 where, in animals, an autoassociative network enables recall of complete memories to underpin object/event recognition. Despite huge motivation to treat age-related human memory disorders, interaction between human CA3 and dentate subfields is difficult to investigate due to small size and proximity. We tested the hypothesis that human dentate gyrus is critical for pattern separation, whereas, CA3 underpins identical object recognition. Using 3 T MR hippocampal subfield volumetry combined with a behavioural pattern separation task, we demonstrate that dentate gyrus volume predicts accuracy and response time during behavioural pattern separation whereas CA3 predicts performance in object recognition memory. Critically, human dentate gyrus volume decreases with age whereas CA3 volume is age-independent. Further, decreased dentate gyrus volume, and no other subfield volume, mediates adverse effects of aging on memory. Thus, we demonstrate distinct roles for CA3 and dentate gyrus in human memory and uncover the variegated effects of human ageing across hippocampal regions. Accurate pinpointing of focal memory-related deficits will allow future targeted treatment for memory loss.


Assuntos
Região CA3 Hipocampal/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Giro Denteado/fisiopatologia , Memória/fisiologia , Reconhecimento Visual de Modelos , Reconhecimento Psicológico/fisiologia , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Estudos de Casos e Controles , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tempo de Reação , Percepção Visual
11.
Elife ; 62017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28691905

RESUMO

Emerging evidence suggests that dopamine may modulate learning and memory with important implications for understanding the neurobiology of memory and future therapeutic targeting. An influential hypothesis posits that dopamine biases reinforcement learning. More recent data also suggest an influence during both consolidation and retrieval. Eighteen Parkinson's disease patients learned through feedback ON or OFF medication, with memory tested 24 hr later ON or OFF medication (4 conditions, within-subjects design with matched healthy control group). Patients OFF medication during learning decreased in memory accuracy over the following 24 hr. In contrast to previous studies, however, dopaminergic medication during learning and testing did not affect expression of positive or negative reinforcement. Two further experiments were run without the 24 hr delay, but they too failed to reproduce effects of dopaminergic medication on reinforcement learning. While supportive of a dopaminergic role in consolidation, this study failed to replicate previous findings on reinforcement learning.


Assuntos
Dopaminérgicos/administração & dosagem , Memória/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Reforço Psicológico , Idoso , Feminino , Humanos , Masculino , Resultado do Tratamento
12.
Front Aging Neurosci ; 8: 139, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27378911

RESUMO

Recent pharmaceutical trials have demonstrated that slowing or reversing pathology in Alzheimer's disease is likely to be possible only in the earliest stages of disease, perhaps even before significant symptoms develop. Pathology in Alzheimer's disease accumulates for well over a decade before symptoms are detected giving a large potential window of opportunity for intervention. It is therefore important that imaging techniques detect subtle changes in brain tissue before significant macroscopic brain atrophy. Current diagnostic techniques often do not permit early diagnosis or are too expensive for routine clinical use. Magnetic Resonance Imaging (MRI) is the most versatile, affordable, and powerful imaging modality currently available, being able to deliver detailed analyses of anatomy, tissue volumes, and tissue state. In this mini-review, we consider how MRI might detect patients at risk of future dementia in the early stages of pathological change when symptoms are mild. We consider the contributions made by the various modalities of MRI (structural, diffusion, perfusion, relaxometry) in identifying not just atrophy (a late-stage AD symptom) but more subtle changes reflective of early dementia pathology. The sensitivity of MRI not just to gross anatomy but to the underlying "health" at the cellular (and even molecular) scales, makes it very well suited to this task.

13.
Cochrane Database Syst Rev ; (6): CD010896, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26102272

RESUMO

BACKGROUND: In the UK, dementia affects 5% of the population aged over 65 years and 25% of those over 85 years. Frontotemporal dementia (FTD) represents one subtype and is thought to account for up to 16% of all degenerative dementias. Although the core of the diagnostic process in dementia rests firmly on clinical and cognitive assessments, a wide range of investigations are available to aid diagnosis.Regional cerebral blood flow (rCBF) single-photon emission computed tomography (SPECT) is an established clinical tool that uses an intravenously injected radiolabelled tracer to map blood flow in the brain. In FTD the characteristic pattern seen is hypoperfusion of the frontal and anterior temporal lobes. This pattern of blood flow is different to patterns seen in other subtypes of dementia and so can be used to differentiate FTD.It has been proposed that a diagnosis of FTD, (particularly early stage), should be made not only on the basis of clinical criteria but using a combination of other diagnostic findings, including rCBF SPECT. However, more extensive testing comes at a financial cost, and with a potential risk to patient safety and comfort. OBJECTIVES: To determine the diagnostic accuracy of rCBF SPECT for diagnosing FTD in populations with suspected dementia in secondary/tertiary healthcare settings and in the differential diagnosis of FTD from other dementia subtypes. SEARCH METHODS: Our search strategy used two concepts: (a) the index test and (b) the condition of interest. We searched citation databases, including MEDLINE (Ovid SP), EMBASE (Ovid SP), BIOSIS (Ovid SP), Web of Science Core Collection (ISI Web of Science), PsycINFO (Ovid SP), CINAHL (EBSCOhost) and LILACS (Bireme), using structured search strategies appropriate for each database. In addition we searched specialised sources of diagnostic test accuracy studies and reviews including: MEDION (Universities of Maastricht and Leuven), DARE (Database of Abstracts of Reviews of Effects) and HTA (Health Technology Assessment) database.We requested a search of the Cochrane Register of Diagnostic Test Accuracy Studies and used the related articles feature in PubMed to search for additional studies. We tracked key studies in citation databases such as Science Citation Index and Scopus to ascertain any further relevant studies. We identified 'grey' literature, mainly in the form of conference abstracts, through the Web of Science Core Collection, including Conference Proceedings Citation Index and Embase. The most recent search for this review was run on the 1 June 2013.Following title and abstract screening of the search results, full-text papers were obtained for each potentially eligible study. These papers were then independently evaluated for inclusion or exclusion. SELECTION CRITERIA: We included both case-control and cohort (delayed verification of diagnosis) studies. Where studies used a case-control design we included all participants who had a clinical diagnosis of FTD or other dementia subtype using standard clinical diagnostic criteria. For cohort studies, we included studies where all participants with suspected dementia were administered rCBF SPECT at baseline. We excluded studies of participants from selected populations (e.g. post-stroke) and studies of participants with a secondary cause of cognitive impairment. DATA COLLECTION AND ANALYSIS: Two review authors extracted information on study characteristics and data for the assessment of methodological quality and the investigation of heterogeneity. We assessed the methodological quality of each study using the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies) tool. We produced a narrative summary describing numbers of studies that were found to have high/low/unclear risk of bias as well as concerns regarding applicability. To produce 2 x 2 tables, we dichotomised the rCBF SPECT results (scan positive or negative for FTD) and cross-tabulated them against the results for the reference standard. These tables were then used to calculate the sensitivity and specificity of the index test. Meta-analysis was not performed due to the considerable between-study variation in clinical and methodological characteristics. MAIN RESULTS: Eleven studies (1117 participants) met our inclusion criteria. These consisted of six case-control studies, two retrospective cohort studies and three prospective cohort studies. Three studies used single-headed camera SPECT while the remaining eight used multiple-headed camera SPECT. Study design and methods varied widely. Overall, participant selection was not well described and the studies were judged as having either high or unclear risk of bias. Often the threshold used to define a positive SPECT result was not predefined and the results were reported with knowledge of the reference standard. Concerns regarding applicability of the studies to the review question were generally low across all three domains (participant selection, index test and reference standard).Sensitivities and specificities for differentiating FTD from non-FTD ranged from 0.73 to 1.00 and from 0.80 to 1.00, respectively, for the three multiple-headed camera studies. Sensitivities were lower for the two single-headed camera studies; one reported a sensitivity and specificity of 0.40 (95% confidence interval (CI) 0.05 to 0.85) and 0.95 (95% CI 0.90 to 0.98), respectively, and the other a sensitivity and specificity of 0.36 (95% CI 0.24 to 0.50) and 0.92 (95% CI 0.88 to 0.95), respectively.Eight of the 11 studies which used SPECT to differentiate FTD from Alzheimer's disease used multiple-headed camera SPECT. Of these studies, five used a case-control design and reported sensitivities of between 0.52 and 1.00, and specificities of between 0.41 and 0.86. The remaining three studies used a cohort design and reported sensitivities of between 0.73 and 1.00, and specificities of between 0.94 and 1.00. The three studies that used single-headed camera SPECT reported sensitivities of between 0.40 and 0.80, and specificities of between 0.61 and 0.97. AUTHORS' CONCLUSIONS: At present, we would not recommend the routine use of rCBF SPECT in clinical practice because there is insufficient evidence from the available literature to support this.Further research into the use of rCBF SPECT for differentiating FTD from other dementias is required. In particular, protocols should be standardised, study populations should be well described, the threshold for 'abnormal' scans predefined and clear details given on how scans are analysed. More prospective cohort studies that verify the presence or absence of FTD during a period of follow up should be undertaken.


Assuntos
Circulação Cerebrovascular , Demência Frontotemporal/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Estudos de Casos e Controles , Estudos de Coortes , Demência/diagnóstico por imagem , Diagnóstico Diferencial , Lobo Frontal/irrigação sanguínea , Demência Frontotemporal/fisiopatologia , Humanos , Sensibilidade e Especificidade , Lobo Temporal/irrigação sanguínea
14.
Brain ; 135(Pt 12): 3721-34, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23114368

RESUMO

Even simple behaviour requires us to make decisions based on combining multiple pieces of learned and new information. Making such decisions requires both learning the optimal response to each given stimulus as well as combining probabilistic information from multiple stimuli before selecting a response. Computational theories of decision making predict that learning individual stimulus-response associations and rapid combination of information from multiple stimuli are dependent on different components of basal ganglia circuitry. In particular, learning and retention of memory, required for optimal response choice, are significantly reliant on dopamine, whereas integrating information probabilistically is critically dependent upon functioning of the glutamatergic subthalamic nucleus (computing the 'normalization term' in Bayes' theorem). Here, we test these theories by investigating 22 patients with Parkinson's disease either treated with deep brain stimulation to the subthalamic nucleus and dopaminergic therapy or managed with dopaminergic therapy alone. We use computerized tasks that probe three cognitive functions-information acquisition (learning), memory over a delay and information integration when multiple pieces of sequentially presented information have to be combined. Patients performed the tasks ON or OFF deep brain stimulation and/or ON or OFF dopaminergic therapy. Consistent with the computational theories, we show that stopping dopaminergic therapy impairs memory for probabilistic information over a delay, whereas deep brain stimulation to the region of the subthalamic nucleus disrupts decision making when multiple pieces of acquired information must be combined. Furthermore, we found that when participants needed to update their decision on the basis of the last piece of information presented in the decision-making task, patients with deep brain stimulation of the subthalamic nucleus region did not slow down appropriately to revise their plan, a pattern of behaviour that mirrors the impulsivity described clinically in some patients with subthalamic nucleus deep brain stimulation. Thus, we demonstrate distinct mechanisms for two important facets of human decision making: first, a role for dopamine in memory consolidation, and second, the critical importance of the subthalamic nucleus in successful decision making when multiple pieces of information must be combined.


Assuntos
Tomada de Decisões/fisiologia , Dopamina/metabolismo , Aprendizagem/fisiologia , Doença de Parkinson , Probabilidade , Núcleo Subtalâmico/fisiologia , Análise de Variância , Tomada de Decisões/efeitos dos fármacos , Estimulação Encefálica Profunda/métodos , Dopaminérgicos/uso terapêutico , Feminino , Humanos , Aprendizagem/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Estimulação Luminosa , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Tempo de Reação/efeitos dos fármacos , Fatores de Tempo
15.
Brain ; 132(Pt 3): 645-60, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19158107

RESUMO

Recent models of human posterior parietal cortex (PPC) have variously emphasized its role in spatial perception, visuomotor control or directing attention. However, neuroimaging and lesion studies also suggest that the right PPC might play a special role in maintaining an alert state. Previously, assessments of right-hemisphere patients with hemispatial neglect have revealed significant overall deficits on vigilance tasks, but to date there has been no demonstration of a deterioration of performance over time--a vigilance decrement--considered by some to be a key index of a deficit in maintaining attention. Moreover, sustained attention deficits in neglect have not specifically been related to PPC lesions, and it remains unclear whether they interact with spatial impairments in this syndrome. Here we examined the ability of right-hemisphere patients with neglect to maintain attention, comparing them to stroke controls and healthy individuals. We found evidence of an overall deficit in sustaining attention associated with PPC lesions, even for a simple detection task with stimuli presented centrally. In a second experiment, we demonstrated a vigilance decrement in neglect patients specifically only when they were required to maintain attention to spatial locations, but not verbal material. Lesioned voxels in the right PPC spanning a region between the intraparietal sulcus and inferior parietal lobe were significantly associated with this deficit. Finally, we compared performance on a task that required attention to be maintained either to visual patterns or spatial locations, matched for task difficulty. Again, we found a vigilance decrement but only when attention had to be maintained on spatial information. We conclude that sustaining attention to spatial locations is a critical function of the human right PPC which needs to be incorporated into models of normal parietal function as well as those of the clinical syndrome of hemispatial neglect.


Assuntos
Atenção , Lobo Parietal/fisiopatologia , Transtornos da Percepção/fisiopatologia , Percepção Espacial , Acidente Vascular Cerebral/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Lobo Parietal/patologia , Reconhecimento Visual de Modelos , Transtornos da Percepção/etiologia , Transtornos da Percepção/psicologia , Estimulação Luminosa/métodos , Tempo de Reação , Detecção de Sinal Psicológico , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/psicologia , Adulto Jovem
16.
Neuron ; 58(1): 144-57, 2008 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-18400170

RESUMO

Flexible behavior in humans often requires that rapid choices be made between conflicting action plans. Although much attention has focused on prefrontal regions, little is understood about the contribution of parietal cortex under situations of response conflict. Here we show that right parietal damage associated with spatial neglect leads to paradoxical facilitation (speeding) of rightward movements in the presence of conflicting leftward response plans. These findings indicate a critical role for parietal regions in action planning when there is response competition. In contrast, patients with prefrontal damage have an augmented cost of conflict for both leftward and rightward movements. The results suggest involvement of two independent systems in situations of response conflict, with right parietal cortex being a crucial site for automatic activation of competing motor plans and prefrontal regions acting independently to inhibit action plans irrelevant to current task goals.


Assuntos
Comportamento de Escolha/fisiologia , Conflito Psicológico , Movimento/fisiologia , Lobo Parietal/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Atenção/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tempo de Reação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...